。 【例1】甲、乙两人沿直线从A地步行至B地,丙从B地步行至A地。已知甲、乙、丙三人同时出发,甲和丙相遇后5分钟,乙与丙相遇。如果甲、乙、丙三人的速度分别为85米/分钟、75米/分钟、65米/分钟。问AB两地的距离为多少米?
A. 8000米
B. 8500米
C. 10000米
D. 10500米 【解析】第一步,本题考查行程问题,属于相遇追及类,用方程法解题。
第二步,设AB两地的距离为S,甲丙相遇时间为t,由甲丙相遇可得:S=(85+65)×t①;由甲丙相遇5分钟后乙丙相遇可得:S=(75+65)×(t+5)②。联立①②,解得S=10500米。
因此,选择D选项。
在这道题中,核心在于无论甲乙相遇还是乙丙相遇,走的路程总和都为AB两地之间的距离,这就是典型的相遇问题中直线型单次相遇,直接代入公式即可。 二、多次相遇问题
在多次相遇问题中,要先识别是属于两端出发还是单端出发问题,再代入公式,直线型两端出发n次相遇:(2n-1)S=(
image_915550.png
)×t;以及直线型单端出发n次相遇:2nS=(
image_925550.png
)×t。 【例二】在一次航海模型展示活动中,甲乙两款模型在长100米的水池两边同时开始相向匀速航行,甲款模型航行100米要72秒,乙款模型航行100米要60秒,若调头转身时间略去不计,在12分钟内甲乙两款模型相遇次数是:
A. 9
B. 10
C. 11
D. 12 【解析】第一步,本题考查行程问题,属于相遇追及类。
第二步,12分钟=720秒。设共相遇n次,则总共行驶距离S=(2n-1)S,利用两端出发多次相遇问题公式(2n-1)S=(
)×t。 【例三】甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?
A. 1.2
B. 1.5
C. 1.6
D. 2.0 【解析】第一步,本题考查行程问题,属于相遇追及类。
第二步,环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。
因此,选择B选项。
在这道题中,因为同向出发,所以代入公式S=(