公务员考试论坛

 找回密码
 立即注册
查看: 678|回复: 0

2019国考行测备考:灵活解答和定最值问题

[复制链接]

63万

主题

63万

帖子

190万

积分

论坛元老

Rank: 8Rank: 8

积分
1907966
发表于 2018-11-4 00:42:01 | 显示全部楼层 |阅读模式
2019国考行测备考:灵活解答和定最值问题    公务员考试中,行测数量关系是让大多数考生最头疼的部分,需要计算比较耗时,题型多样,需要花费大量时间去积累。解答数量关系题,需要我们针对不同的题型采用不同的灵活解法。和定最值问题属于结合极值问题中的一种,下面,我们来讲解一下和定最值的解法。    一、具体例题    例1.21个三好学生名额分给5个班级,且互不相等,问分得名额最多的班最多分多少?
    例2.20个三好学生名额分给5个班级,且互不相等,问分得名额最多的班级最少分多少?若有21个呢?
    例3.21个三好学生名额分给6个班级,且互不相等,问分得名额最多的班级最少分多少个?若有24个呢?若有25个呢?    二、题型介绍    这三个例题均属于和定最值问题。那具体如何判定呢?
    和定最值:几个数的和一定,求其中某项量的最大或最小值。
    解题原则:由于和是定值,若使其中某项最大,则其它项应该尽可能的小;
    若使其中某项最小,则其他项应该尽可能的大。    三、例题解析    例1.求分得名额最多的班级最多分多少个,即求最大项的最大值。若使其尽可能多,则其他班级分得的数量应该尽可能少;但是条件中要求每人都有且互不等,所以至少也应该有1个,互不相等即从1开始的连续自然数,分别有1、2、3、4个。此时已经分出10个名额,还剩11个,都给剩下的班级,则分得名额最多的班级最多得11个名额。    例2.求分的名额最多的班级最少分多少,要想使其最少,则其它班级分得名额应该尽可能多,最大项尽可能小,其他项尽可能多,那么这是一个等均接近的过程。而最等均接近的时候是均分,即为20÷5=4,而题目中要求互不相等,所以此时为连续的自然数,且中间项为4,即为
   

675a099be48336322ccc00bb955fb5f841.jpg

675a099be48336322ccc00bb955fb5f841.jpg

    则此时,分得名额最多的班级至少分得6个名额。
    若有21个名额,即为21÷5=4……1,所以均分之后我们得到了中间值是4,而题目中要求互不相等,所以比4多的依次是拿到5、6个,比4少的依次拿到3、2个,构造出了数列:
   

c50588bc94897dd475a1bc371008567e41.jpg

c50588bc94897dd475a1bc371008567e41.jpg

    此时还剩下一个名额,要想让分得名额最多的人班级拿到的尽可能少,这个名额应该考虑给拿的少的人,但是不管给拿到2、3、4、5个中的哪一个,都会出现和其他人相等的情况,不满足“互不相等”,所以6+1,分得名额最多的班级至少分7个。    例3.求分的名额最多的班级最少分多少,要想使其最少,则其它班级分得名额应该尽可能多,最大项尽可能小,其他项尽可能多,那么这是一个等均接近的过程。而最等均接近的时候是均分,即为21÷6=3.5,而题目中要求互不相等,且名额数应该为整数,则此时构造数列为,
   

082da0846f2be7b38d5301d369dfb31b41.jpg

082da0846f2be7b38d5301d369dfb31b41.jpg

    此时,分得名额最多的班级至少分得6个名额。
    若有24个名额,即为24÷6=4,所以均分之后我们得到了中间值是4,而题目中要求互不相等,所以构造出了数列:
   

5d4ead70a4d2600f38154ac9990a8e2041.jpg

5d4ead70a4d2600f38154ac9990a8e2041.jpg

    则此时,分得名额最多的班级至少分得7个名额。
    若有24个名额,即为25÷6=4余1,所以均分之后我们得到了中间值是4,而题目中要求互不相等,所以构造出了数列:
   

21208b3362a95936dd994def94df0f1f41.jpg

21208b3362a95936dd994def94df0f1f41.jpg

    此时还剩下一个名额,要想让分得名额最多的人班级拿到的尽可能少,这个名额应该考虑给拿的少的人,所以给第四个人3+1=4,则分得名额最多的班级至少分7个。    上述几种情况是我们在和定最值问题中会遇到的情况,相比运用方程法求解,直接构造数列相对要直观简单许多,希望广大考生做题过程中勤于总结,掌握技巧性方法,节约时间,提高效率。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-7-15 02:02 , Processed in 0.062928 second(s), 11 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表