公务员考试论坛

 找回密码
 立即注册
查看: 116|回复: 0

2014江西公务员行测数量关系整除特性:反向运算

[复制链接]

63万

主题

63万

帖子

190万

积分

论坛元老

Rank: 8Rank: 8

积分
1907966
发表于 2018-6-25 17:41:41 | 显示全部楼层 |阅读模式
数字特性法,顾名思义,就是利用数字的特性来做题。主要包括奇偶特性、整除特性、以及比例倍数特性。数字特性法是最能体现行测特点的方法,效率极高。本文重点介绍其中的整除特性中的反向运算。
    我们在上一篇文章中谈到,当确定答案为某个数的倍数时,可以采用整除特性,从而进行排除。若我们能据此排除3个选项,则答案不言自明。但很多时候我们根据整除特性只能排除部分选项,此时就需要进行反向运算。
    所谓整除特性的反向运算, 指的是代入选项再算出其他部分的量,看是否满足其他部分应该满足的数字特性。
    以2007年国家的第46题为例。某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有(
)。
    A. 3920人 B. 4410人
    C. 4900人 D. 5490人
    按照一般的解题步骤,根据“其中本科毕业生比上年度减少2%”可得,今年本科毕业生:去年本科毕业生=49:50。根据比例倍数特性,可知,今年本科毕业生人数应为49的倍数,只能排除D。似乎只能到此为止。但如果我们进行反向运算,算出另一部分——即今年研究生的数量,则可看到另一番风景。
    根据“研究生毕业数量比上年度增加10%”,可知今年毕业生人数:去年毕业生人数=11:10,因此今年毕业生人数为11的倍数。将选项A代入,今年研究生人数为7650-3920=3730,根据被11整除的特性,可迅速判断3730不为11的倍数,排除;将选项B代入,今年研究生人数为
7650-4410=3240,同样不为11的倍数,排除;因此锁定答案为C。
    再运用反向运算时需要注意以下几点:一是除了所求项外另一部分需要能判定必定含有某个因子;二是如果在考试时短时间内难以做出判断,为节约时间,可以直接列方程。
    实际上,除了整除特性可以运用反向运算外,奇偶特性也可以采用反向运算。
    甲、乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂多25%,非技术人员人数比乙厂多6人。甲、乙两厂共有多少人?(
)
    A. 680 B. 840 C. 960 D. 1020
    按照一般的解题步骤,根据“甲厂的人数比乙厂多12.5%”可得:甲厂人数:乙厂人数=9:8,所以总人数一定为17的倍数,排除B、C。将D
代入,根据“甲、乙两个工厂的平均技术人员比例为45%”可得两厂的技术人员总数为1020×45%=51×9,为奇数,因此非技术人员之和必定也为奇数,而根据“非技术人员人数比乙厂多6人”可知非技术人员之和应该为偶数。矛盾。D项排除。锁定答案为A。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-14 02:05 , Processed in 0.043592 second(s), 9 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表