121. 南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔,那么,这家企业的“万元户”中至少有多大比例是股民?( )
A. 67.5% B. 75% C. 87.5% D. 91.5%
122. 甲、乙、丙、丁四人步行,在同时间内甲行5步时乙可行6步;乙行7步时丙可行8步;丙行9步时丁可行10步。又甲、乙、丙、丁每步的距离之比为15∶14∶12∶10。问甲行630米时,丁可行多少米?( )
A. 640米 B. 680米 C. 720米 D. 750米
123. 把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8=11。若对某些自然数n满足n-Sn=2007,则n最大值是( )。
A. 2010 B. 2016 C. 2019 D. 2117
124. 一队战士排成三层空心方阵多出9人,如果在空心部分再增加一层,又差7人,问这队战士共有多少人?( )
A. 121 B. 81 C. 96 D. 105
125. 新上任的库房管理员拿着20把钥匙去开20个库房的门,他只知道每把钥匙只能打开其中的一扇门,但不知道哪一把钥匙开哪一扇门,现在要打开所有关闭的20个库房门,他最多要开多少次?( )
A. 80 B. 160 C. 200 D. 210
[参考答案与解析]
121. C 【解析】 先假设这个企业共有员工100人,其中: 90人是股民,即可知10人不是股民; 80人是“万元户”,即可20人不是“万元户”; 60人是打工仔。因此,“万元户”的80人至少有80-10=70人是股民,他们占全体“万元户”的70÷80×100%=87.5%。可见,本题正确答案为C。
122. A 【解析】 将四人步数之比与每步距离之比结合考虑,可推出相同时间内两人所行距离之比,并由此求出丁所行的步数。即甲∶乙=(15×5)∶(14×6)=25∶28,乙∶丙=(14×7)∶(12×8)=49∶48,丙∶丁=(12×9)∶(10×10)=27∶25。可得甲行630米时丁行(28×48×25×630)÷(25×49×27)=640米。故甲行630米时丁行640米。
123. C 【解析】 当n-Sn=2007时,n为20ab的形式,依题意有20ab-(2+a+b)=2007,可得2000+10a+b-2-a-b=2007,得出a=1。当b取最大值9时,n有最大为2019。故选C。
124. D[解一] 由题意可得空心方阵再往里一层的总人数是:9+7=16(人),每边人数为:16÷4+1=5(人);所以3层空心方阵最外层每边人数为:5+2×3=11(人),总人数为:(11-3)×3×4=96(人);这队战士的总人数是:96+9=105(人)。
[解二] 相邻两层的人数之差为8人,最里层的人数为9+7+8=24人,次里层为24+8=32人,最外层为32+8=40人,所以总人数为24+32+40+9=105人。
125. D 【解析】 本题应从最不利情况去考虑:打开第一个房间要20次,打开第二个房间要19次……共计要开20+19+18+…+1=210(次)。
126. 甲、乙两校共有毕业生180人,两校各买了一批纪念册,给本校毕业生每人一本后,甲校余116本,乙校余114本。经研究两校各向彼校毕业生每人送一本纪念册,送后甲校还比乙校多剩10本。问甲校的毕业生人数比乙校的毕业生人数多多少人?( )
A. 20人 B. 16人 C. 10人 D. 8人
127. 某种奖券的号码有9位,如果奖券至少有两个非零数字并且从左边第一个非零数字起,每个数字小于它右边的数字,就称这样的号码为“中奖号码”,请问该种奖券的“中奖号码”有( )。
A. 512个 B. 502个 C. 206个 D. 196个
128. 王师傅在某个特殊岗位上工作,他每上8天班后,就连续休息2天。如果这个星期六和星期天他休息,那么,至少再过几个星期后他才能又在星期天休息?( )
A. 7个 B. 10个 C. 17个 D. 70个
129 小明家电热水器贮满了水,晚上小明妈妈用去了20%,小明的爸爸又用去了18升,小明用去了剩下水的10%,最后剩下的水只有贮存量的一半还少了3升。问小明家的电热水器贮水量是多少升?( )
A. 40升 B. 50升 C. 60升 D. 80升
130. 一批衣服,甲单独卖完要10天,乙单独卖完要15天,如果两人合作工作效率就会降低,甲每天只能完成工作量的4/5,乙每天只能完成工作量的9/10。现在要8天卖完这批衣服,两人合作的天数尽量少,那么两人合作多少天?( )
A. 3 B. 5 C. 7011 D. 7
[参考答案与解析]
126. D【解析】解一:由题意知,两校各给本校毕业生每人一本后共余下116+114=230本。两校再各向彼校毕业生每人送一本后共余下230-180=50本,而这时甲校比乙校多余下10本,故知此时甲校还余下(50+10)÷2=30本,乙校还余下(50-10)÷2=20本。而两校各给对方每个毕业生送了一本后,相当于两校买的纪念册各发了180本,所以甲校买了30+180=210本,乙校买了20+180=200本,甲、乙两校的毕业生人数分别是210-116=94人,200-114=86人。二者之差94-86=8人。故选D。
解二:第一次分发毕业纪念册后,甲校余下的比乙校多116-114=2本,给彼校分发完毕后,甲校比乙校剩余的多10本,由此可推断甲校学生比乙校多10-2=8人,故选D。
127. B【解析】 解一:号码1—9各出现1或0次,按递增顺序排列(前面补0),共产生2×2×2×2×2×2×2×2×2=29个号码,其中无非零数字或仅有1个非零数字的应予排除(共有10种)。所以中奖号码共有512-10=502个。故本题正确答案为B。
解二:中奖号码至少有两个非零数字且从左边第一个非零数字起,每个数字小于它右边的数字,则可得出:C29+C39+C49+C59+C69+C79+C89+C99=502,故选B。
128 A 【解析】 设至少过N个星期,可能第N个星期六与星期日连续休息,也可能第N个星期天与星期一连休2天,前者得出:
7N-2=10K+8………………(1)
后者得出
7N-1=10K+8………………(2)
其中 K是自然数,由(1)得7N=10(K+1),因此,7N是10的倍数,N最小为10。
由(2)得7N=10K+9,表明7N的个位数字是9,所以N=7,17,…。
可见,至少再过7个星期后,才能又在星期天休息。故本题正确答案为A。
129. C【解析】解一:将电热水器中贮满了水时的贮存量看做单位“1”。由题意知,小明的妈妈用水量是20%,小明的爸爸用水量是18升,则小明妈妈、爸爸用完水之后,还剩下80%少18升,小明的用水量是(80%×10%)=8%少(18×10%)=1.8升,三人用水的总量则是20%+8%=28%再加18-1.8=16.2升,三人用水的总量也应该是50%多3升。则可推算出这个电热水器的贮水量是(18-1.8-3)÷[50%-(20%+8%)]=60升。
解二:本题也可采用列方程法,设该电热水器的贮水量为x升,则有:
x?20%+18+(x?80%-18)×10%=x/2+3,解得x=60升。
130. B 【解析】 甲的工作效率为1/10,乙的工作效率为1/15,两人合作时的效率为1/10×4/5+1/15×9/10=7/50。可以看出乙的工作效率最低,甲、乙两人合作时的工作效率最高,要使甲、乙合作天数尽可能少,则必须甲尽可能多卖。如果全是甲卖,8天可以完成1/10×8=4/5,剩下的1/5要由甲乙合作比甲单独多卖的部分来完成。
即:(1-1/10×8)÷(7/50-1/10)=5(天)。甲乙合作5天。
136. 把1~200这200个自然数中,既不是3的倍数,又不是5的倍数,从小到大排成一排,那么第100个是几?( )
A. 193 B. 187
C. 123 D. 40
137. 152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)
A. 1 B. 7
C. 12 D. 24
138. 50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,…依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?( )
A. 30 B. 34
C. 36 D. 38
139. 如是2003除以一个两位数后,所得余数最大,则这个两位数为( )。
A. 92 B. 82
C. 88 D. 96
140. 两个人做一种游戏:轮流报数,报出的数不能超过8(也不能是0),把两个人报出的数连加起来,谁报数后,加起来的是88(或88以上的数),谁就获胜。让你先报数,你第一次报几就是一定会获胜?( )
A. 3 B. 4
C. 7 D. 9
[参考答案解析]
136. B【解析】 从1至200的自然数中是3的倍数的数有66个,是5的倍数的数有40个,而既是3又是5的倍数的数有13个。所以从1至200的自然数中是3或5的倍数的数有(66+40-13)=93个,所以从1至200的这200个自然数中,既不是3又不是5的倍数的数有(200-93)=107个。现在要求第100个,即倒数第8个。将它从大到小列出:199、197、196、194、193、191、188、187……即从小到大排列第100个是187。
故本题选B。
137. A【解析】 设箱子个数为m,
因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。
如果m=11,那么
球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。
如果m≤9,那么
球的总数≤10×9+(10+9+8+…+2)=90+54=144