四、隔板模型的应用
【例1】 将10个足球分给高三年级的三个班,每个班级至少分一个,共有多少种不同的分法?
A 10 B 26 C 36 D 3
【中公解析】例题满足隔板模型的三个基本条件①元素必须完全相同(10个足球)②每个对象都有③每个对象至少一个,所以可以使用隔板模型的公式得到结果
2017050410272017122.png
=36种,选择C。
此种题型属于完全符合隔板模型条件的题目,但是不符合基本条件但是仍然是相同元素的不同分堆如何解决呢?
【例2】将20份相同的工作任务分给3个不同的部门,每个部门至少分5项任务,共有多少种不同的分配方法。
A 171 B 156 C 42 D 21
【中公解析】此题目并不满足隔板模型的三个基本条件,不能直接使用公式,但是此题仍然是属于相同元素的不同分堆,所以可以将此题目变成符合公式的条件要求的题目。既然每个部门至少分5项,那就可以先给每个部门分4项任务,总共先分出去12项。然后再分剩下的8项任务,三个部门每个部门至少分一项,即可采用隔板模型,同时可以满足题目要求每个部分至少分得5项任务。所以共有
2017050410280448522.png
=21种不同的方法。选择D项。
对于符合隔板模型,但是每个对象分的元素并不满足至少一个的情况就先分出去一部分,再分剩下的部分。即是如果满足相同元素的不同分堆,每个对象至少分8个,那就每个对象先分出去7个;每个对象至少分9个,那就每个对象先分出去8个,等等。
【例3】老师决定将10只相同的铅笔分给4个同学,但是还没想好怎么分,那么这个老师共有多少种不同的分法。
A 286 B 276 C 56 D 72
【中公解析】此题目也属于相同元素的不同分堆,那么如何使其为满足公式基本条件。可以先从每个同学那里借一支铅笔,此时老师有14支铅笔,并且欠了每个同学一支铅笔,在分发的时候,必须至少给每个同学一支。那么即可满足将14支铅笔分给4个同学,每个同学至少分一支,共有