公务员考试论坛

 找回密码
 立即注册
查看: 255|回复: 3

第十三讲 简单的统筹规划问题

[复制链接]

18万

主题

18万

帖子

56万

积分

论坛元老

Rank: 8Rank: 8

积分
562579
发表于 2016-6-23 00:02:04 | 显示全部楼层 |阅读模式
第十三讲  简单的统筹规划问题
    这一讲我们讨论有关物资调运、下料问题及配套生产等实例。
    例1  某工地A有20辆卡车,要把60车渣土从A运到B,把40车砖从C运到D(工地道路图如下所示)。问如何调运最省汽油?
               

20131203044341124.jpg

20131203044341124.jpg

分析  把渣土从A运到B或把砖从C运到D,都无法节省汽油,只有设法减少跑空车的距离,才能省汽油。
解:如果各派10辆车分别运渣土和砖,那么每运一车渣土要空车跑回300米,每运一车砖则要空车跑回360米,这样到完成任务总共空车跑了:300×60+360×40=32400(米)
如果一辆从从A→B→C→D→A跑一圈,那么每运一车渣土,运一车砖要空车跑:240+90=330(米);
因此,先派20辆车都从A开始运渣土到B,再空车开往C运砖到D后空车返回A,这样每辆车跑两圈就完成了运砖任务。然后再派这20辆车都从A运渣土到B再空车返回A,则运渣土任务也完成了。这时总共空车跑了:330×40+300×20=19200(米)
后一种调运方案比前一种减少跑空车13200米,这是最佳节油的调运方案。
说明:“节省跑空车的距离”是物资调运问题的一个原则,下面通过例子再介绍“避免对流”的原则。
例2  一支勘探队在五个山头A、B、C、D、E设立了基地,人数如下图所示。为调整使各基地人数相同,如何调动最方便?(调动时不考虑路程远近)
               

20131203044359145.jpg

20131203044359145.jpg

分析  在人员调动时不考虑路程远近的因素,就只需避免两个基地之间相互调整,即“避免对流现象”。
解:五个基地人员总数为
17+4+16+14+9=60(人)
依题意,调整后每个基地应各有
    60÷5=12(人)
因此,需要从多于12人的基地A、C、D向不足12人的基地B、E调人。为了避免对流,经试验容易得到调整方案如下:
先从D调2人到E,这样E尚缺1人;再由A调1人给E,则E达到要求。此时,A尚多余4人,C也多余4人,总共8人全部调到B,则B亦符合要求。
调动示意图如下所示,这样的图形叫做物资流向图。用流向图代替调运方案,能直观地看出调运状况及有无对流现象,又可避免列表和计算的麻烦。图中箭头表示流向,箭杆上的数字表示流量。
   
   
回复

使用道具 举报

0

主题

3万

帖子

7万

积分

论坛元老

Rank: 8Rank: 8

积分
73456
发表于 2016-6-23 00:27:02 | 显示全部楼层

20131203044443826.jpg (8.73 KB, 下载次数: 0, 售价: 4 金钱)
回复 支持 反对

使用道具 举报

0

主题

3万

帖子

7万

积分

论坛元老

Rank: 8Rank: 8

积分
74384
发表于 2016-6-23 00:45:16 | 显示全部楼层

再举两例如下:
例如一号仓库有20吨货物,二号仓库有30吨货物,其他仓库存货照样如前,那么应该往哪个仓库集中呢?首先仍应把一号仓库的20吨货物运往二号仓库集中,然后再把五号仓库的40吨货物也运往二号仓库集中,这样运费最少。
又如一号仓库有30吨货物,二号仓库有20吨货物,其他仓库存货仍然如前,那么应该往哪个仓库集中呢?先把一号仓库的30吨货物运往二号仓库集中,再把五号仓库的40吨货物也运往二号仓库集中,这样运费最省。(想想为什么?)
还有一点值得注意,在决定货物往何处集中时,起决定作用的是货物的重量,至于距离仅仅是为了计算运费。如果把本题中各个仓库之间的距离换成另外一些数值,仍应该把货物集中到五号仓库。
本题可以推广为一般命题:“在一条公路上有n个仓库,它们分别存货a1吨、a2吨、…、an吨,现在需要把所有的货物集中存放在一个仓库里,应该选取哪个仓库可以使总运输费最少?”它的解法将涉及到一次函数的知识,同学们在学过初三代数之后就会完全明白了。
例4  189米长的钢筋要剪成4米或7米两种尺寸,如果剪法最省材料?
分析  显然无残料的剪法是最优方案,于是考虑二元一次不定方程的整数解问题。
解:设4米长的剪x根,7米长的剪y根,依题意列方程
    4x+7y=189
根据倍数分析法可知
7?x(即x是7的倍数)
令x1=0,则7y=189,解出y1=27;
x2=7,则7y=161,解出y2=23;
x3=14,则7y=133,解出y3=19;
x4=21,则7y=105,解出y4=15;
x5=28,则7y=77,解出y5=11;
x6=35,则7y=49,解出y6=7;
x7=42,则7y=21,解出y7=3。
因此,有七种剪法都是最省材料的。
说明:本例是最简单的下料问题,属于“线性规划”的范畴。线性规划是运用一次方程(组)、一次函数来解决规划问题的数学分支,规划论研究的问题主要有两类:一类是确定了一项任务,研究怎样精打细算使用最少人力、物力和时间去完成它;另一类是在已有一定的人力、物力和财力的条件下,研究怎样合理调配,使它们发挥最大限度的作用,从而完成最多的任务。
例5  用10尺长的竹竿做原材料,来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎么截法最合算?
分析  不难想到有三种截法省料:
截法1:截成3尺、3尺、4尺三段,无残料;
截法2:截成3尺、3尺、3尺三段,残料1尺;
截法3:截成4尺、4尺两段,残料2尺。
由于截法1最理想(无残料),因此应该充分应用截法1。考虑用原材料50根,可以截成100根3尺长的短竹竿,而4尺长的仅有50根,还差50根。于是再应该截法3,截原料25根,可以得到4尺长的短竹竿50根,留下残料:2×25=50(尺)
解:至少要用75根原材料,其中50根用截法1,25根用截法3,这样的截法最省料。
说明:一般说来,一定长度的条形材料要截取两种毛坯的下料问题,用本例的方法求解是比较省料的。这种解法的理论根要用到二元不等式及一次函数图像,有兴趣的读者可参阅有关书刊。
   
   
回复 支持 反对

使用道具 举报

0

主题

3万

帖子

7万

积分

论坛元老

Rank: 8Rank: 8

积分
73910
发表于 2016-6-23 01:29:50 | 显示全部楼层

20131203044630850.jpg (33.14 KB, 下载次数: 0, 售价: 3 金钱)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-7-1 18:13 , Processed in 0.064641 second(s), 12 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表