公务员考试论坛

 找回密码
 立即注册
查看: 131|回复: 0

2017湖南公务员考试行测备考:极限思想之和定最值

[复制链接]

63万

主题

63万

帖子

190万

积分

论坛元老

Rank: 8Rank: 8

积分
1907966
发表于 2016-9-5 19:23:27 | 显示全部楼层 |阅读模式
一、知识铺垫
1、什么是极限思想
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。如一条船顺水而下用时t1,逆流而上用时t2,则当水速增大时,t1+t2如何变化?当水速增大时,t1会变小,而t2会变大,但是,t1与t2,哪个变化大不知道,所以t1+t2如何变化也不清楚。此时如果改用极限的思想来思考的话就会比较简单,假设水速增大到无限大,则此船肯定回不来了,即t2无限大,此时虽然t1变小,但相对于t2而言,t1的变化幅度要小得多。所以,t1+t2变大了。
2、适用极限思想的题的题型特征
题干或问法中出现最大或最小、最多或最少、至多或至少。
3、极限思想的核心:凑、均、等、接近
二、极限思想之和定最值的应用
1、什么是和定最值
和定最值:多个数的和一定,求其中某个数的最大或最小值问题。
2、和定最值中的6种问法及对应的解题要点
①求最大量的最大值:让其他值尽量小。
例:5个箱子总重50公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍,问最重的箱子重量最多是多少斤?
②求最小量的最小值:让其他值尽量大。
例:6个数的和为48,已知各个数各不相同,且最大的数是11分,则最小数最少是多少?
③求第N大的数的最大值(N即不是最大,也不是最小,如第二大的数的最大值):让其他值尽量小。
例:有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,且分得鲜花数最多的人不超过7朵,则分得鲜花第二多的人最多分得几朵鲜花?
④求第N大的数的最小值(N即不是最大,也不是最小,如第二大的数的最大值):让其他值尽量大。
⑤求最大量的最小值:让各个分量尽可能的“均等”,且保持大的量仍大、小的量仍小。
例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得几朵鲜花?
⑥求最小量的最大值:让各个分量尽可能的“均等”,且保持大的量仍大、小的量仍小。
例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最少的人最多分得几朵鲜花?
【中公小结】一般情况下,第一种情况,题干中会出现所求量与其他量之间的不等式关系;第二种情况,题干中最大数的值有一定的限制条件;后四种情况,题干中会出现“这些数各不相同”的条件。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2024-11-18 16:40 , Processed in 0.062202 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表