|
巧用代入法助你快速解题
行测考试的难点在于,相对较短的时间内要做大量的题目。这时速度和准确率往往不能协调好,要想在规定的时间内把题目做完,可能会错很多题目;要想正确率高一些,在规定的时间内就做不完题目。这是很多考生面临的问题。而相对于行测考试的其他题型,数学运算是很多考生最头疼的题型,也是最浪费时间的题目,很多考生对于数学运算采取了放弃的策略。这样就白白丢掉了很多分数。
其实数学运算真的有那么难吗?经过多年的研究,我发现数学运算的题目往往都有一些巧妙的解答方法,可以快速准确的做出答案。
分析行测试卷,我们可以明显发现考试的特点:都是选择题。这就意味着,正确答案就在所给的四个选项中,我们的任务不是做出正确答案,而是选出正确的答案。经过这样的转化,我们可以想到,代入法是一个不错的选出答案的方法。
我们先来看一道例题:
某机关盖车棚剩下一批砖,办公室部分人员都帮忙把砖搬走,若每人搬3块还剩10块,每人搬4块少20块,问共有多少块砖?
A.100 B.110 C.120 D.130
看到这道题目,我们能想到方程法,可以设未知数,列方程,进行复杂的求解。这也是数学运算浪费我们时间的原因。但是如果我们用带入法来解决这道题目,就会发现方便了不少。 假设一共有100块砖,每人3块剩10块就是30人,每人四块少20块,正好符合题意,所以我们可以快速选出答案A。
通过上面的例题,我们可以总结出使用代入法的题目特点:题目很复杂,不能轻易的看出等量关系。这时用带入法会很简便,也是命题人想让考生所采取的方法。
我们再看一道例题练习一下:
1980年李红出生时,她爷爷的年龄时他自己出生年份的1/29,问李红爷爷在1988年时年龄是多少?
A.76岁 B.64岁 C.86岁 D.74岁
这道题目关系很复杂,不能轻易的得到等量关系求解,所以我们考虑用代入法。我们从最小的选项开始验证。假如1988年爷爷的年龄为64,那么出生年份就是1988-64=1924年,而1980年爷爷年龄为56,不是出生年份的1/29,所以排除掉,经过验证,1988年爷爷的年龄应该为74,故选择D。
我们再看一道例题:
一会展中心有大小三个会议室,小会议室可容纳303人,中会议室容纳的人数是会展中心可容纳人数的五分之一,大会议室容纳的人数是会展中心可容纳人数的七分之若干。问该会展中心三个会议室可同时接纳多少人?
A.4115 B.3825 C.3535 D.2585
这道题目也很复杂,不易找到等量关系,所以我们考虑用带入法,将ABCD带入题干,发现C符合题干要求,中会议室可以接纳707人,那么大会议室就是2525人,正好为整个人数的5/7。
所以,代入法是我们解决数学运算题目很方便的一种方法,大家在备考的过程中要多加练习,熟练运用,相信它会在行测考试中给你节约大量的时间。[NextPage]
10秒钟快速解答工程问题
如果问考生行测考试中,最不愿意做哪部分的题目,大多数考生都会选择数学运算部分。题目难度比较大,而且花费大量的时间。很多考生都觉得如果这些时间用在别的类型的题目上,可以得到更多的分数,所以很多考生对于数学运算部分的态度是:放弃。但是经过多年的解题,总结研究,我发现其实数学运算并不像很多考生想象的那样困难。
数学运算部分有很多的题型,比如:利润问题、容斥问题、概率问题、工程问题等。每种题型都有自己的特点,根据题型的特点,我们可以找到解决这类问题的简便方法。10秒钟就可以解答一道题目。今天我们一起分析一下工程问题。
我们先看一道例题:
服装厂赶制一批服装,第一车间单独要22天完成,第一车间做了5天后,第二车间也开始与第一车间一起做,又用了6天全部完成任务,如果这批衣服完全交给第二车间需要几天完成?
看到工程问题,绝大多数考生的第一思维是列方程,因为工程问题寻找等量关系容易,很方便可以列出方程。
设:第二车间单独x天完成。则
1/22*5+(1/22+x)*6=1
解得x=1/12
所以得到第二车间单独要用12天。
但是解方程比较费时,计算当中出错的几率也大。
但是对于工程问题,我们所考察的是工效、时间和工作总量之间的关系。通过分析这几个量之间的关系,我们往往就可以得到答案。对于这道题:
一车间做11天,二车间做6天,可以完成全部工作,
又知道一车间做22天可完成全部工作,
所以,一车间做11天完成全部的一半,则
二车间用6天完成全部的一半,
所以二车间单独做用2*6=12天。
这样分析不用复杂计算,不易出错,还可以节省很多的时间。
我们在看一道例题:
做一批儿童玩具。甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64件。如果让甲、乙两组合作4天,则还有256件没完成。现在决定三个组合做这批玩具,需要多少天完成?( )
A.3 B.4 C.5 D.6
这道题目也可以用方程法来求解,但是需要设很多未知数,列方程组。求解麻烦,容易出错,浪费时间。如果我们仔细分析题目,可以发现其中的规律。
甲乙合作4天,还剩256件,256/64=4,说明丙做这剩下的256件也要用4天,可以判断,甲乙丙合作要4天可以完成全部任务。
大家在复习备考的过程中,要多注意分析能力的培养,多注意题型方法的总结,相信大家在考试的过程中,会快速准确的解答。
|
|