公务员考试论坛

 找回密码
 立即注册
查看: 146|回复: 0

公务员行测备考:牛吃草问题最全解读

[复制链接]

63万

主题

63万

帖子

190万

积分

论坛元老

Rank: 8Rank: 8

积分
1907966
发表于 2018-6-25 17:45:49 | 显示全部楼层 |阅读模式
一、牛吃草问题的基本题型
    (一)追及—— 一个量使原有草量变大,一个量使原有草量变小
    原有草量=(牛每天吃掉的草-每天生长的草) 天数
    例:牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?按照公式,设每头牛每天吃的草量为“1”,每天生长的草量为X,可供25头牛吃T天,所以(10-X)
20=(15-X) 10=(25-X) T,先求出X=5,再求得T=5。
    (二)相遇—— 两个量都使原有草量变小
    原有草量=(牛每天吃掉的草+其他原因每天减少的草量) 天数
    例:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天?
    解析:牛在吃草,草在匀速减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每天吃掉的草+每天减少的草)
天数,设每头牛每天吃的草量为“1”,每天减少的草量为X,可供Y头牛吃10天,所以(20+X) 5=(15+X) 6=(Y+X)
10,先求出X=10,再求得Y=5。
    二、牛吃草问题的升级版题型
    牛吃草问题出了以上两种基本模型,在此基础上还有一些其他的变形。
    (一)极值型牛吃草问题
    题目与标准牛吃草中的追及问题相同,只是题目的问法进行了改变,问为了保持草永远吃不完,那么最多能放多少头牛吃。
    例:牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问为了保持草永远吃不完,那么最多能放多少头牛?
    解析:牛在吃草,草在匀速生长,所以是牛吃草问题中的追及问题,原有草量=(牛每天吃掉的草-每天生长的草)
天数,设每头牛每天吃的草量为“1”,每天生长的草量为X,(10-X) 20=(15-X)
10,求得X=5,即每天生长的草量为5,要保证永远吃不完,那就要让每天吃掉的草量等于每天生长的草量,所以最多能放5头牛。
    (二)多个草场牛吃草问题
    多个草场的牛吃草问题,是不同的牛数在不同的草场上的几种不同吃法,其中每头牛每天吃草量和草每天的生长量,两个量是不变的。我们可以通过最小公倍数法即通过寻找多个草场面积的“最小整数倍”,然后将所有面积都转化为“最小公倍数”,同时对牛的头数进行相应变化,然后进行解答。这样就变成了在相同面积草场的牛吃草问题,那么就可以直接使用牛吃草问题公式进行解答了。
    例:20头牛,吃30公亩牧场的草15天可吃尽,15头牛吃同样牧场25公亩的草,30天可吃尽。请问几头牛吃同样牧场50公亩的草,12天可吃尽?
    解析:取30、25和50的公倍数300,所以原题等价于“300亩的牧场可供200头牛吃15天,可供180头牛吃30天,那么可供多少头牛吃12天”,设每头牛每天吃草量为1,草长的速度是x,300亩的草可供n头牛吃12天,那么有(200-x)×15=(180-x)×30=(n-x)×12,解得x=160,n=210,210÷6=35,所以35头牛吃同样牧场50公亩的草,12天可吃尽。
    考生只要掌握了以上解答技巧,再碰到任何牛吃草问题就不再是问题。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-13 03:09 , Processed in 0.053883 second(s), 9 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表