一些数字推理题目中出现的数距离一些特殊的数字非常近,这里所指的特殊数字包括平方数,立方数,因此当出现某个整数的平方或者立方周围的数字时,我们可以从这些特殊数字入手,进而找出原数列的规律。例如下面这道2007年国家公务员考试行测的真题:0
,9 ,26 ,65 ,124 ,( ) A. 165 B. 193 C. 217 D. 239
当我们看到26,65,124时,应该自然的本能的联想到27,64,125,因为27,64和125都是整数的方次,27是3的立方,64是4的立方也是8的平方也是2的6次方,125是5的立方,很明显,我们应该把64看作4的立方,也就是该数列每一项加1或减1以后,成为一组特殊的数字,他们是整数的立方,具体的说,就是:0+1为1的立方,9-1为2的立方,26+1为3的立方,65-1为4的立方,124+1为5的立方,因此,所求项减1应等于6的立方,故所求项为217,因此该题选C。从这道题目,我们看到要在考场上做到“作对作快”,必须在备考时进行知识的积累和储备,具体到数字推理部分,就是要在考前将1到20的平方:1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400;1到10的立方:1,8,27,64,125,216,343,512,729,1000;2的1次方到10次方:2,4,8,16,32,64,128,256,512,1024;5的1次方到5次方:5,25,125,625,3125背熟,当数字推理中出现以上这些数字周围的数字时,要联想到这些特殊的数,从而找出规律,例如,看到217就要想到216。