如上图所示,一个班级的总人数为I人,其中喜欢语文的有A人,喜欢数学的有B人,两者都不喜欢的有Y人,问两者都喜欢的至少有多少人?
对于这道题,显然题目让求得量是X,那么根据图可得I = A + B - X + Y,在这里要减去X就是因为,A和B里边都含有X,相加完之后X重复了一次,所以要把多余的这一次减掉。 [强化练习]
电视台向100个人调查昨天收看电视情况,有62人看过一频道,有34人看过六频道,有11个人两个频道都看过,问:两个频道都没有看过的有多少人?
A.4 B.15 C.17 D.25 [中公解析]
这道题和上面讲述的模型一样,所以直接套公式I = A + B - X + Y,I、A、B、X分别对应100、62、34、11,代入就能求出Y为15,所以答案选B。
2、三者容斥问题
2016091909335733714.jpg
如上图所示,这个模型表示的含义是:一个班一共有学生I人,喜欢语文的有A人,喜欢数学的有B人,喜欢英语的有C人,只喜欢语文和数学的有e人,只喜欢语文和英语的有f人,只喜欢数学和英语的有g人,三科都喜欢的有X人,三科都不喜欢的有Y人,根据容斥原理,这个模型可以表示为I = A + B + C - ( e + f + g ) -2X + Y。 [强化练习]
某调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,其中有89人看过甲片,47人看过乙片,63人看过丙片,24人三部电影全看过,20人一部也没看过,则只看过其中两部电影的人数是( )
A.69人 B.65人 C.57人 D.46人 [中公解析]
这道题的问法跟模型有一点点出入,但变化不大,在公式I = A + B + C - ( e + f + g ) -2X + Y中, e + f + g作为一个整体来看,表示的量就是只看过两部电影的人数,也就是要求的量,所以直接把题目所给出的量代入即可,所求答案为46人,选D。
综上所述,容斥问题在很多同学眼中是比较繁琐,容易被“绕进去”,但中公教育专家相信,真正弄懂、“吃透”上面两个模型的话,容斥问题就变得比较简单了,希望考生能够多做题练习巩固。