深刻理解路程、时间、速度的关系,巧妙解题
速度的单位一般为米/秒、米/分、千米/时等,代表的是在单位时间内走过的路程,代表的是一种线性的路程和时间的关系。这里应注意单位时间其实是可以人为规定的,相当于方程里面设未知数为X,那么路程和速度也相对的被人为规定了,比如某人在一段时间内走过了10千米,那么他在10倍这段时间内就走过了100千米。能够灵活的运用这种关系,对于理解题目和简化计算过程都非常有好处。以下题为例:
一只游轮从甲港顺流而下到乙港,马上又逆水返回甲港,共用8小时,顺水每小时比逆水每小时多行12千米,前4小时比后4小时多行30千米。甲、乙两港相距多少千米?
A.72 B.60 C.55 D.48
解析:在这个题目中出现了“前4小时比后4小时多行30千米”,把4个小时的路程作为了一个标准路程,那么应该怎样理解呢这句话呢?首先我们来看一下前4个小时走过的路程和后4个小时走过的路程都代表了什么。画路程图如下,BC=CD。
db1ba5ff5056dbcc8b59dac1b2146c0e.gif
众所周知,船在顺水中的速度一定大于在逆水中的速度,那么在整个行程的8个小时中,前4个小时一定是该船顺水到达乙港后,又逆水走了一段路程所用的时间,即前4个小时走过了AB+BC,后4个小时就只是逆水到达甲港所用的时间,即后4个小时走过了CA。现在将两段路程相减,AB+BC-CA=AB-DA=30公里。此时大家可以想象一下,AB为顺水走过的路程,DA呢?是否等于在相同时间内逆水走过的路程?当然答案是肯定的。由AB-CD=30,我们就可以求出顺水行驶过AB的时间为30÷12=2.5小时,那么逆水行驶了8-2.5=5.5小时。又AB-DA=BD=30公里,那么逆水的速度也可以求得,30÷(8-2.5-2.5)=10公里,则甲、乙两港相距10×5.5=55公里,此题选择C。
希望通过这道例题,可以让大家了解到“在相同时间内走过的路程”在行程问题中的重要性。并能找到适当的切入点,灵活运用这种关系,横扫行程问题。 |