2024年国考数量关系备考技巧:不定方程的常用求解方法
Document方法一:代入排除法
例题
某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的其中一个,已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人。问参加b兴趣班的学生有多少个?
A.7个
B.8个
C.9个
D.10个
【答案】C。华图解析:根据题意有,27+b+2c+6=56,则2c+b=23。且b和c均为正整数。代入A选项:b=7,有c=8,b为第三大,与题意不符,排除A;代入B选项:b=8,c=3.5,c不为整数,与题意不符,排除B;代入C选项:b=9,有c=7,符合题意,此题选C。
方法二:整除法(应用环境:当常数项与未知数前的系数有最大公约数时)
例题
某批发市场有大、小两种规格的盒装鸡蛋,每个大盒里装有 23 个鸡蛋,每个小盒里装有 16 个鸡蛋。餐厅采购员小王去该市场买了 500 个鸡蛋,则大盒装一共比小盒装:
A.多 2 盒
B.少 1 盒
C.少 46 个鸡蛋
D.多 52 个鸡蛋
【答案】D。华图解析:设大盒数量为 x,小盒数量为 y,则 23x+16y=500,由于 16y、500 均是 4 的倍数,则 23x 也是 4 的倍数,即 x 是 4 的倍数。当 x=4、8 时,y 均为非整数,排除;当 x=12 时,y=14 符合题意;当 x=16、20 时,y 均为非整数,排除。故大盒装比小盒装少 14-12=2 盒,多 23×12-16×14=52 个鸡蛋,选择 D。
方法三:奇偶性(应用环境:当未知数前的系数一奇一偶时比较好用)
例题
办公室工作人员使用红、蓝两种颜色的文件袋装 29 份相同的文件。每个红色文件袋可以装 7 份文件,每个蓝色文件袋可以装 4 份文件。要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为( )个。
A.1、6
B.2、4
C.4、1
D.3、2
【答案】D。华图解析:设红色文件袋 x 个,蓝色 y 个,依据题意得,7x+4y=29,4y为偶数,29 为奇数,则 7x 为奇数,x 为奇数,排除 B、C。代入 A 项,7×1+4×6=31,不符合,排除 A,直接选择 D。
方法四:尾数法(应用环境:当未知数前的系数是5或5的倍数时)
例题
有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是( )。
A.1辆
B.3辆
C.2辆
D.4辆
【答案】B。华图解析:根据题意,设大客车需要x辆,小客车需要y辆,则37x+20y=271。20y的尾数是0,则37x的尾数是1,结合选项可知,x=3满足题意。
以上就是行测数量关系不定方程的常用求解方法,希望大家能在上述例题的基础上学会举一反三,通过解题方法及应用环境的总结,将这一类题目分数稳稳握在手中。
2024年公务员考试图书推荐
2024版公务员行测+申论5100题 2024版国家公务员考试教材+真题 2024版公务员模块宝典 2024年公务员考试推荐课程
>>>2024年国/省考公务员笔试系统提升班plus版
>>>2024年国/省公务员笔试《悦享班》
页:
[1]