公务员考试网 发表于 2018-6-25 17:54:43

公务员考试数学运算之容斥原理

十七、容斥原理
    1.关键提示:
    容斥原理是2004年、2005年中央国家公务员考试的一个难点,很多考生都觉得无从下手,其实,容斥原理关键内容就是两个公式,考生只要把这两个公式灵活掌握就可全面应对此类题型。另外在练习及真考的过程中,请借助图例将更有助于解题。
    2.核心公式:
    (1)两个集合的容斥关系公式:
    A+B=A∪B+A∩B
    (2)三个集合的容斥关系公式:
    A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
    例题1:2004年中央A类真题
    某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是(
)。
    A.22 B.18 C.28 D.26
    解析:设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)
    显然,A+B=26+24=50;A∪B=32-4=28,
    则根据公式A∩B=A+B-A∪B=50-28=22
    所以,答案为A。
    例题2:2004年山东真题
    某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人
    A.57 B.73 C.130 D.69
    解析:设A=会骑自行车的人(68),B=会游泳的人(62)
    显然,A+B=68+62=130;A∪B=85-12=73,
    则根据公式A∩B=A+B-A∪B=130-73=57
    所以,答案为A。
    例题3:电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。两个频道都没看过的有多少人?
    解析:设A=看过2频道的人(62),B=看过8频道的人(34)
    显然,A+B=62+34=96;A∩B=两个频道都看过的人(11)
    则根据公式A∪B=A+B-A∩B=96-11=85
    所以,两个频道都没有看过的人数=100-85=15
    所以,答案为15。
    例题4:2005年中央A类真题
    对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:
    A.22人 B.28人 C.30人 D.36人
    解析:设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)
    A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)
    B∩C=既喜欢看电影又喜欢看戏剧的人(16)
    A∩B∩C=三种都喜欢看的人(12)
    A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)
    根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
    C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)
    =148-(100+18+16-12)=26
    所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C
    =52-16-26+12
    =22
页: [1]
查看完整版本: 公务员考试数学运算之容斥原理