2018天津市公务员行测技巧:牛吃草问题
一、题型特征草在不断生长且生长速度固定不变,牛在不断地吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要不同的时间。给出牛的头数,求时间;或者给出时间,求牛的头数。
特征:排比句,草受两个因素的限制。
二、解题方法
原有草量=(牛每天吃掉的草-每天生长的草)×天数
一般设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N,天数为T。
原有草量=(N-X)*t
三、例题讲解
(一)标准的牛吃草问题
在同一草场放不同的数量的牛有不同种吃法,求牛的头数或天数。
解题技巧:利用解题方法直接求解
例1、牧场上有一片草场,草每天均匀生长。如果放10头牛20天吃完,如果放15头牛,10天吃完;如果放25头牛几天吃完?
解析:“如果......”排比句。牛在吃草,使草减少;草在均匀生长。草受两个因素限制,所以是牛吃草问题。
设每头牛每天吃的草量为单位1,草的生长速度为X,天数为T。
原有草量=(10-X)×20=(15-X)×10=(25-X)T.X=5,T=5.
即:25头牛5天吃完。
例2、牧场上有一片草场,由于入冬天气变冷,草每天均匀枯萎。如果放20头牛5天吃完,如果放15头牛,6天吃完;求放几头牛10天吃完?
解析:“如果......”排比句。牛在吃草、草在枯萎,都使草减少。草受两个因素限制,所以是牛吃草问题。
设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N。
原有草量=(20-X)×5=(15-X)×6=(N-X)×10.X=-20,N=5.X为负数表示草在枯萎。
即:10头牛5天吃完。
例3、有一池泉水,泉底均匀不断地涌出泉水。如果用8台抽水机10小时抽干;如果用12台抽水机6小时抽干;如果用14台几小时抽干?
解析:“如果......”排比句。抽水机抽水使池水减少,泉水均匀涌出使池内泉水增加。池内的泉水受两个因素限制,所以是牛吃草问题。抽水机是牛,泉水是草。
设每台抽水机每小时的抽水量为单位1,泉水涌出的速度为X,时间问T。
原有池水量=(8-X)×10=(12-X)×6=(14-X)×T.X=2,T=5.
即:14台抽水机5小时抽干。
(二)极值型牛吃草问题
在同一草场放不同的数量的牛有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。
解题技巧:利用原有草量=(牛每天吃掉的草-每天生长的草)×天数,求出草的生长速度,最多的牛的头数=X。
例4、牧场上有一篇青草,每天草都在均匀生长。这片草场可供10头牛20天吃完;或者15头牛10天吃完。问为了保持草永远都吃不完,那么最多能放多少头牛?
解析:在同一草场放不同的牛数有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。属于牛吃草问题的极值型问题。
设每头牛每天吃的草量为单位1,草的生长速度为X。
原有池水量=(10-X)×20=(15-X)×10.X=5.
即:最多可放5头牛。
(三)多个草场牛吃草问题
在不同一草场放不同的牛数有不同种吃法,其中每头牛每天吃的草量和草每天生长的量都不变。
解题技巧:通过最小公倍数寻找多个草场的面积的“最小公倍数”,然后将所有面积都转化为“最小公倍数”同时对牛的头数进行相应的变化,转化成原有草量相同的标准的牛吃草问题。
例5、30亩的草场20头牛15天吃完;25亩的草场15头牛30天吃完;问50亩的草几头牛12天吃完?
解析:不同一草场放不同的牛数有不同种吃法。判断为牛吃草问题的不同草场问题。
30、25、50的最小公倍数为300。则原题等价于“300亩200头牛15天吃完;180头牛15天吃完;可供多少头牛吃12天?”
设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N。
原有池水量=(200-X)×15=(180-X)×30.X=160,N=210.
即:50亩的草场可供210÷6=35头牛吃完。
联系我们:
地址:天津市和平区卫津路博联大厦809
电话:022-23106761、18630865610
公务员备考交流群:205902627
全国统一客服热线:400-700-9897
关注知满天教育官方微信号(zhimantianv),招考信息、备考资料及时看!知满天公务员考试网(http://www.zhimantian.com/)祝您公考成功!
页:
[1]