2016年国考行测数量关系备考之数学应用题(9)
例12 某班有50人,在一次数学考试后,按成绩排了名次.结果,前30名的平均分数比后20名的平均分数多12分.一位同学对“平均”的概念不清楚,他把前30名的平均成绩,加上后20名的平均成绩,再除以2,错误地认为这就是全班的平均成绩.这样做,全班的平均成绩是提高了,还是降低了?请算出提高多少或降低多少.解:全班平均成绩降低了.
按照这位同学的计算,相当于把前30名同学比后20名同学平均多出的12分作了平分.因此相当于前30名同学每人少了6分,后20名同学每人多了6分,合起来全班的总分就少了
30×6-20×6=60(分).
全班的平均成绩也就降低了
60÷(30+20)=1.2(分).
例13 某学校入学考试,确定了录取分数线.报考的学生中,只录取了
http://www.sdsgwy.com/article/UploadPic/2011-3/2011316101752875.jpg
均分比录取分数线低26分.所有考生的平均成绩是70分.那么录取分数线是多少?
http://www.sdsgwy.com/article/UploadPic/2011-3/2011316101752180.jpg
我们把录取学生的人数算作1,没有被录取的人数算作3.
以录取分数线作为基数,没有被录取的考生总共少了26×3分,录取的学生总共多了10×1分,合起来,总共少了
26×3-10×1(分).
对所有考生来说,每人平均少了
(26×3-10×1)÷(3+1)=17(分).
也就是每一考生的平均分70(分)比录取分数线少了17(分),因此录取的分数线是
70+17=87(分).
注意 这道题可检验如下:
没有被录取的考生的平均成绩是87-26=61(分),被录取考生的平均成绩是87+10=97(分).全体考生的平均成绩是
61+(97-61)÷(3+1)=70(分),
或
(61×3+97×1)÷(3+1)=70(分).
由此就知道,上面解答是正确的.
例14某次数学竞赛原定一等奖10人,二等奖20人.现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生平均分提高了1分,得一等奖的学生的平均分提高了3分.那么原来一等奖平均分比二等奖平均分多多少分?
解:根据题意
前六人平均分=前十人平均分+3.
这说明在计算前十人平均分时,前六人共多出3×6=18(分),来弥补后四人的分数,因此后四人的平均分比前十名平均分少
18÷4=4.5(分).
当后四人调整为二等奖后,这时二等奖共有20+4=24(人),平均每人提高了1分,这由调整进来的四人来供给,每人平均供给
24÷4=6(分).
后四人平均分=(原二等奖平均分)+6.
与前面算出的前六人平均分比较,就知原来一等奖平匀分比原来二等奖平均分多
4.5+6=10.5(分).
我们可以画出示意图来说明上面的计算.
http://www.sdsgwy.com/article/UploadPic/2011-3/2011316101752431.jpg
从前十名来说,前六名用二条虚线所夹部分,来弥补后四人的二条虚线所夹部分这一块的不足.
对二等奖来说,可以画出如下示意图:
http://www.sdsgwy.com/article/UploadPic/2011-3/2011316101753244.jpg
页:
[1]