行测数量关系备考:数量关系经典题目专家解析(4)
16倍数计算法例1 甲是乙的三倍,乙是丙的1/6,问甲是丙的几分之几?
A1/2B1/3C1/4D1/5
解析:在此题中,甲=3乙,乙=1/6丙。因此,甲=3×1/6丙=1/2丙。故本题的正确答案为A。
例2 老张藏书14 000册,老马藏书18 000册。如果老张想将自己的藏书成为老马藏书的3倍,那么,他还应购进多少册书?
A30 000B40 000C45 000D50 000
解析:本题比较简单,可先将14 000与18
000两数字的三个零省去,那么18×3=54,再减去老张现有的书的册数,54-14=40,再加上省去的三个零,即40 000册。故本题的正确答案为B。
17年龄计算法
例1 女童小囡今年4岁,妈妈今年28岁,那么,小囡多少岁时,妈妈的年龄是她的3倍?
A10B11C12D13
解析:今年妈妈比小囡大28-4=24(岁),当妈妈年龄是小囡年龄的3倍时,妈妈的年龄比小囡大3-1=2(倍),即24岁正好是小囡当时年龄的2倍。据此可推导出,小囡在24÷2=12(岁)时,妈妈的年龄是她的3倍。验证一下,4+8=12,28+8=36。故本题正确答案为C。
例2 今年父亲是儿子年龄的9倍,4年后父亲是儿子年龄的5倍。那么,今年父子年龄分别是多少岁?
A40,5B35,6C36,4D32,6
解析:此题从直观就可得知答案。只有(36+4)÷(4+4)=5,其他三个数分别加4,皆不得5。其实,这道题的答案一目了然,题中一开始就说了“父亲是儿子年龄的9倍”,四个选项中,只有C符合条件。故本题的正确答案为C。
18鸡兔同笼计算法
例1 一笼中的鸡和兔共250条腿,已知鸡的只数是兔只数的3倍,问笼中共有多少只鸡?
A50B75C100D125
解析:设鸡的只数为x,按腿计算,鸡腿为2x,鸡为兔只数的3倍,即兔是鸡的13,兔子是4条腿,兔子的腿数为13x×4,即2x+13x×4=250,103x=250,x=75(只)。故本题正确答案为B。
通用公式总结:
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
例2 一段公路上共行驶106辆汽车和两轮摩托车,他们共有344只车轮,问汽车与摩托车各有多少辆?
A68,38B67,39C66,40D65,41
解析:该题的四个备选答案,其辆数合计为106辆,但汽车是4只车轮,摩托车是2只车轮。在四个选项中,只有C为66×4+40×2=344(只)车轮。故本题正确答案为C。
19人数计算法
例1 一车间女工是男工的90%,因生产任务的需要又调入女工15人,这时女工比男工多20%,问此车间男工有多少人?
A150B120C50D40
解析:求男工数,可设男工为x,已知女工是男工的90%,即女工为09x,所以,09x+15=(1+02)x,09x+15=12x,03x=15,x=50(人)。故本题的正确答案为C。
例2 某剧团男女演员人数相等,如果调出8个男演员,调进6个女演员后,女演员人数是男演员人数的3倍,该剧团原有多少女演员?
A20B15C30D25
解析:从题中可知,女演员调进6人后,女演员人数则是男演员调出8人后的3倍。故可设原男女演员皆为x,即x+6=(x-8)×3,x=15。所以,女演员原来是15人。故本题的正确答案为B。
20工程计算法
例1 一件工程,A队单独做300天完成,B队单独做200天完成。那么,两队合作需几天完成?
A120B125C130D135
解析:该题的基本公式为,工作总量(假设为1)÷工作效率=工作时间,即1÷(1300+1200)=120。故本题的正确答案为A。
例2
一个水池有两根水管,一根进水,一根排水。如果单开进水管,10分钟将水池灌满,如果单开排水管,15分钟把一池水放完。现在池子是空的,如果两管同时开放,多少分钟可将水池灌满?
A20B25C30D35
解析:公式基本同上,1÷(110-115)=30。故本题正确答案为C。
例3:某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。问甲乙两地距离多少公里?
A.15B.25C.35D.45
答案为B。全程的中点即为全程的2.5/5处,离2/5处为0.5/5,这段路有2.5公里,因此很快可以算出全程为25公里。
页:
[1]