2014年河南公务员行测高端技巧:十字交叉法
2014年河南公务员考试时间为9月27日,考试科目为行测和申论,而十字交叉法主要是解决行测数量关系中混合平均问题的,混合平均问题主要包括平均数、利润、浓度等的混合问题。解题过程是将几个部分的平均量进行混合,得到一个整体的平均量。而十字交叉法是由盈亏思想得到的,即多的总量等于少的总量,比如:70与80两个数的平均数为75,这里70比75少5,80比75多5,多的5等于少的5,才保证了70与80的平均数为75;80、80、50三个数的平均数为70,这里80比70多10,共2个80,所以共多了20,50比70少了20,多的总量20=少的总量20,才保证了三个数的平均数为70。而十字交叉法的具体形式比较简单,包括五部分:部分平均量、总体平均量、交叉作差、对应比、对应实际量。大家记住这五部分就能解决相应的题了,专家带大家来看一个比较简单的例子。
例1:已知一个班级的一次考试成绩,男生的平均分为70分,女生的平均分为80分,整体的平均分为74分,求这个班级的男女生人数比为多少?
【解析】设男生人数为x人,女生人数为y人,则利用十字交叉法
在运用十字交叉法时,大多数考生比较困惑的是利用十字交叉后得到的比是什么比,这里为什么3:2就是对应的男生人数与女生人数之比。这就需要我们回归到十字交叉法的思想——盈亏思想来说明十字交叉法的原理。男生的平均量是70分,整体的平均量是74分,说明每个男生比整体少4分;而女生的平均量是80分,说明每个女生比整体多6分。要想保证整体的平均分是74分,得多的总量与少的总量达到平衡,即多的总量=少的总量。而这里每个男生比整体少4分,男生共有x人,即总共少4x人;每个女生比整体多6分,女生共y人,既总共多6y人;故需4x=6y,得到x:y=6:4=3:2,也即交叉作差之比。而男生平均量=男生的总分数/男生人数;女生平均量=女生总分数/女生人数。所以交叉作差之比也是再求两个平均量时的分母之比。大家记住这个结论,在解决混合平均问题时就简单多了。
例2:某高校2006年度毕业学生7650名,比上年度增长2%,其中本科生毕业生数量比上年度减少2%,而研究生数量比上年度增加10%,那么这所高校今年毕业的本科生有多少人?
【解析】这显然是一个混合平均问题,因为增长率=增长量/上一年的量,所以增长率也相当于平均量,可利用十字交叉法
在求部分平均量时,分母为上一年的本科生人数和研究生人数,因此交叉作差后的比应该为2005年的本科生与研究生之比,即2:1,也即2005年一共的人数为3份,而2005年总的人数=
,所以一份为2500人,2005年本科生占2份,所以共5000人,则今年本科生有
=4900人。
浓度混合问题(浓度=溶质/溶液)、利润混合问题(利润率=利润/成本)等问题在利用十字交叉方法解题时一定要注意,十字交叉后得到的比为求部分平均量分母的比,尤其是利润的混合问题要注意的题目涉及的是同种商品时,那么成本之比就是商品个数之比(成本=单个成本 个数);题目涉及的是不同种商品,那么成本之比就不是商品个数之比,要因题而异。
页:
[1]