公务员考试网 发表于 2017-6-28 03:46:13

2017辽宁公务员考试:数量关系——极限问题

极限包括均值不等式、二次函数求极值、和定最值、抽屉问题和最不利原则这几个方面,均值不等式可推出和定,差小积大,以及积定,差小和小;二次函数的求极值是可以化成与均值不等式相关的。如果问题中出现问最大/小,至多/少之类的,那么大多时候我们会考虑采用极值的方法。
    1、均值不等式
    均值不等式我们以前有学过,是a+b≥2√ab。从这个公式可以推出,当a+b为一个定值,当a=b时,a*b得到最大值;而反过来,如果a*b是一个定值,当a=b时,a+b得到最小值。比如:
    (1)a+b=10,a、b都是正整数,则a*b的最大值是多少?
    解:很明显这是符合和定差小积大的规律的,只要另a=b=5即可,所以a*b=25。
    (2)要用长为100m的篱笆围成一个四边形作为养鸡场,问这个养鸡场面积最大是多少?
    解:100m的篱笆围四边形,要使面积最大,根据和定,差小积大原理,最好是围成正方形,那周长是100m,所以每边是25m,则面积最大是252=625m2。
    因为二次函数求极值是可以化成和定,差小积大,或者是积定,差小和小。
    y=ax2±bx+c,将式子写成ymin/max=(A-x)(B+x),把(A-x)看出是均值不等式中的a,(B+x)看成是b,即可计算出ymin/max,或者求出x。   2、和定最值
    这里的和定和上面均值不等式的和定是一样的,都是几个数的和一定,但和定最值里要求的最值,就不是几个数的积的最值了,而是参与和定计算中的某一数据所能达到的最大值或者最小值。一般情况下,当几个数的和一定时,求其中某个数的最大,那么其他数就尽可能的小;求其中某个数的最小,则其他几个数就尽可能的大。比如:
    a+b+c=10,a、b、c都是正整数,且a>b>c,问(1)a所能达到的最大值/最小值是多少?
    (2)a所能达到的最小值是多少?
    解:(1)求a的最大值,另b和c尽可能的小,但又不可能比a大。因为a、b、c都是正整数,所以最小的c只能是1,而b要比c大又尽可能小,只能是2;那么剩下的数字7只能是a了,此时的a达到最大。
    (2)求a的最小值,则b和c就尽可能的大,但又不可能比a大,所以最接近b就比a小1时是b达到最大的时候,同理,c比a小2,比b小1。我们可以运用方程法,设a为x,则b为x-1,c为x-2。a+b+c=10=x+x-1+x-2,x≈4.3,取4为a,此时b=3,c=2,还剩1,只能放到a,则a最小为5。同样的,用盈亏的思想也可以解答此题。
    其他应用例题,若题目没有表明各个数各不相同,那么也就说明这些数是可以相同的。要根据具体情况具体分析。更多的应用例题可以参考辽宁公务员考试历年真题。    3、最不利原则
    最不利原则只要掌握一些临界的方法,其实一点儿都不难。此类题型一般的问法是:至少……才能保证……;当然也有其他和一样的普通问法,比如问最少有多少,最多有多少等。
    解决最不利原则题目的方法,就是将题目中所提到的条件尽可能的接近,即到达一个临界,差一丁点儿就能满足。比如经典例题:
    一副完整的扑克牌有54张,问至少抽多少张才能保证抽出的扑克牌有3张花色是相同的?
    解:扑克牌除了大小王各1张外,一共有4种花色,我们把大小王抽出来,其余四种花色各抽2张,这时无论如何都没办法达到3张同花色的要求,但已经达到了临界值,此时已经抽出了2+2*4=10张,只要再在任何一种花色抽出1张扑克牌,就可以达到要求。更多精彩内容欢迎登陆:
    辽宁公务员考试辽宁公务员网
    辽宁公务员面试辽宁人事考试网
页: [1]
查看完整版本: 2017辽宁公务员考试:数量关系——极限问题